Vladimir U. Nazarov 傅洛夫
Associate Research Fellow

Ways to contact me:

E-mail:nazarovgate.sinica.edu.tw
Phone: 886-2-2787-3177
Fax: 886-2-2787-3122
Website:https://www.rcas.sinica.edu.tw/~nazarov
Address: Research Center for Applied Sciences, Academia Sinica
Research Center for Applied Sciences
Academia Sinica, 128, Section 2, Academia Road
Nangang, Taipei 11529, TAIWAN.
中央研究院應用科學研究中心
台北市11529南港區研究院路二段128號
D-7074-2012

Education:

Research Fields:

Recent Publications:

  1. Nazarov V.U., Krasovskii E.E., Silkin V.M. (2020) Electron Energy-Loss and Photoelectron Spectroscopies of Surfaces and Two-Dimensional Crystals. In: Rocca M., Rahman T.S., Vattuone L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer.
    [ DOI:10.1007/978-3-030-46906-1_17 ]
  2. V. U. Nazarov, Many-body quantum dynamics by the reduced density matrix based on the time-dependent density functional theory, Phys. Rev. Lett. 123, 095302 (2019).
    [ DOI:10.1103/PhysRevLett.123.095302 ]
  3. V. U. Nazarov, Crossover between collective and independent-particle excitations in quasi-2D electron gas with one filled subband, The European Physical Journal B, 91,95 (2018). Topical issue: Special issue in honor of Hardy Gross.
    [ DOI:10.1140/epjb/e2018-90107-8 ]
  4. V. U. Nazarov, V. M. Silkin, and E. E. Krasovskii, Probing mesoscopic crystals with electrons: One-step simultaneous inelastic and elastic scattering theory, Phys. Rev. B. 96, 235414 (2017).
    [ DOI:10.1103/PhysRevB.96.235414 ]
  5. V. U. Nazarov, Quasi-low-dimensional electron gas with one populated band as a testing ground for time-dependent density-functional theory of mesoscopic systems, Phys. Rev. Lett. 118, 236802 (2017).
    [ DOI:10.1103/PhysRevLett.118.236802 ]
  6. V. U. Nazarov, Exact exact-exchange potential of two- and one-dimensional electron gases beyond the asymptotic limit, Phys. Rev. B. 93, 195432 (2016).
    [ DOI:10.1103/PhysRevB.93.195432 ]
  7. V. U. Nazarov, V. M. Silkin, and E. E. Krasovskii, Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces, Phys. Rev. B 93, 035403 (2016).
    [ DOI:10.1103/PhysRevB.93.035403 ]
  8. V. U. Nazarov, Negative static permittivity and violation of Kramers-Kronig relations in quasi-two-dimensional crystals, Phys. Rev. B 92, 161402(R) (2015).
    [ DOI:10.1103/PhysRevB.92.161402 ]
  9. V. U. Nazarov and G. Vignale, Derivative discontinuity with localized Hartree-Fock potential, Journal of Chemical Physics, 143, 064111 (2015).
    [ DOI:10.1063/1.4928514 ]
  10. V. U. Nazarov, Electronic excitations in quasi-2D crystals: What theoretical quantities are relevant to experiment? New Journal of Physics 17, 073018 (2015).
    [ DOI:10.1088/1367-2630/17/7/073018 ]
  11. V. U. Nazarov, G. Vignale, and Y.-C. Chang, Dynamical many-body corrections to the residual resistivity of metals, Phys. Rev. B. 89, 241108(R) (2014). Physics Viewpoint.
    [ DOI:10.1103/PhysRevB.89.241108 ]
  12. V. U. Nazarov, F. Alharbi, T. S. Fisher, and S. Kais, Time-dependent density-functional theory of coupled electronic-lattice motion in quasi-two-dimensional crystals, Phys. Rev. B 89, 195423 (2014).
    [ DOI:10.1103/PhysRevB.89.195423 ]
  13. E. Kogan, V. U. Nazarov, V. M. Silkin, and M. Kaveh, Energy bands in graphene: Comparison between the tight-binding model and ab initio calculations, Phys. Rev. B, 89, 165430(2014).
    [ DOI:10.1103/PhysRevB.89.165430 ]
  14. V. U. Nazarov, Time-dependent effective potential and exchange kernel of homogeneous electron gas, Phys. Rev. B 87, 165125 (2013).
    [ DOI:10.1103/PhysRevB.87.165125 ]
  15. V. U. Nazarov, E. E. Krasovskii, and V. M. Silkin, Scattering resonances in two-dimensional crystals with application to graphene, Phys. Rev. B 87, 041405(R) (2013).
    [ DOI:10.1103/PhysRevB.87.041405 ]
  16. A. V. Goncharenko, V. U. Nazarov, and Kuan-Ren Chen, Nanostructured metamaterials with broadband optical properties, Optical Materials Express, 3, 143 (2013).
    [ DOI:10.1364/OME.3.000143 ]
  17. A. V. Goncharenko, V. U. Nazarov, and Kuan-Ren Chen, Development of metamaterials with desired broadband optical properties, Appl. Phys. Lett. 101, 071907 (2012).
    [ DOI:10.1063/1.4746400 ]
  18. E. Kogan and V. U. Nazarov, Symmetry classification of energy bands in graphene, Phys. Rev. B, 85, 115418 (2012) .
    [ DOI:10.1103/PhysRevB.85.115418 ]
  19. V. U. Nazarov and G. Vignale, Optics of semiconductors from meta-GGA-based time-dependent density-functional theory, Phys. Rev. Lett. 107, 216402 (2011).
    [ DOI:10.1103/PhysRevLett.107.216402 ]
  20. E. E. Krasovskii, V. M. Silkin, V. U. Nazarov, P. M. Echenique, and E. V. Chulkov, Dielectric screening and band-structure effects in low-energy photoemission, Phys. Rev. B 82, 125102 (2010).
    [ DOI:10.1103/PhysRevB.82.125102 ]
  21. V. U. Nazarov, G. Vignale, and Y.-C. Chang, On the relation between the scalar and tensor exchange-correlation kernels of the time-dependent density-functional theory, Journal of Chemical Physics 133, 021101 (2010).
    [ DOI:10.1063/1.3455711 ]
  22. V. U. Nazarov, I. V. Tokatly, S. Pittalis, and G. Vignale, Antiadiabatic limit of the exchange-correlation kernel of an inhomogeneous electron gas, Phys. Rev. B 81, 245101 (2010).
    [ DOI:10.1103/PhysRevB.81.245101 ]
  23. V. U. Nazarov, G. Vignale, and Y.-C. Chang, Exact dynamical exchange-correlation kernel of a weakly inhomogeneous electron gas, Phys. Rev. Lett. 102, 113001 (2009)
    [ DOI:10.1103/PhysRevLett.102.113001 ]
  24. V. U. Nazarov, J. M. Pitarke, Y. Takada, G. Vignale, and Y.-C. Chang, Including nonlocality in exchange-correlation kernel from time-dependent current density functional theory: Application to the stopping power of electron liquids, Phys. Rev. B 76, 205103 (2007)
    [ DOI:10.1103/PhysRevB.76.205103 ]
  25. V. U. Nazarov, J. M. Pitarke, C. S. Kim, and Y. Takada, Time-dependent density-functional theory for the stopping power of an interacting electron gas for slow ions, Phys. Rev. B 71 , 121106(R) (2005)
    [ DOI:10.1103/PhysRevB.71.121106 ]
  26. J. M. Pitarke, V.U.Nazarov, V.M.Silkin, E.V.Chulkov, E.Zaremba, and P. M. Echenique, Theory of acoustic surface plasmons, Phys. Rev. B. 70, 205403 (2004).
    [ DOI:10.1103/PhysRevB.70.205403 ]