Shu-Wei Chang 張書維
Associate Research Fellow

Ways to contact me:

E-mail:swchangsinica.edu.tw
Phone:
Fax: 02-2787-3122
Address: Research Center for Applied Sciences, Academia Sinica
128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
中央研究院應用科學研究中心
台北市11529南港區研究院路二段128號

Full Curriculum Vitae, click here!!


Education:

Experience:

Research Fields:

  • Dynamic modulations of transistor lasers
  • Chiral photonics, metamaterials, plasmonics, and their applications
  • Reciprocity-based computation schemes for active cavities and photonic crystals
  • Nanometer-scale cavities
  • Group IV silicon-germanium-tin direct-bandgap materials
  • Slow light in semiconductors
  • Spintronics and spin-related photonic devices
  • Quantum-dot and quantum-well coupled systems

Recent Publications:

  1. M. Kumar, S. J. Hsu, S. Y. Ho, S. W. Chang, and C. H. Wu*, "Current gain enhancement of heterojunction bipolar light-emitting transistors using staircase InGaAs quantum-well," IEEE Trans. Electron Dev., accepted (2023).
  2. M. Kumar, L. C. Hsueh, S. W. Cheng, S. W. Chang*, and C. H. Wu*, "Analytical modeling of current gain in multiple-quantum-well heterojunction bipolar light-emitting transistors," IEEE Trans. Electron Dev., published on line (2023).
    [ DOI:10.1109/TED.2023.3289930 ]
  3. C. C. Cheng, P. J. Cheng, T. W. Huang, W. T. Wang, J. T. Tsai, M. H. Shih, and S. W. Chang*, "Realization of spinning mode with maximum chirality in photonic crystal defect cavity at exceptional point," Optica, 10, 732 (2023).
    [ DOI:10.1364/OPTICA.481825 ]
  4. L. Yang, S. W. Chang, and C. H. Wu*, "Steady-state characterization for capture and escape lifetimes of two-dimensional electron gas in light-emitting transistors," IEEE Trans. Electron Dev., 70, 3675 (2023).
    [ DOI:10.1109/TED.2023.3279055 ]
  5. P. C. Tsai, C. W. Huang, S. J. Chang, S. W. Chang, S. J. Chang, and S. Y. Lin*, "In-plane gate graphene transistor with epitaxially grown molybdenum disulfide passivation layers," Sci. Rep. 13, 9197 (2023).
    [ DOI:10.1038/s41598-023-36405-9 ]
  6. C. Y. Peng, H. T. Cheng, Y. H. Hong, W. C. Hsu, F. H. Hsiao, T. C. Lu, S. W. Chang, S. C. Chen∗, C. H. Wu∗, and H. C. Kuo∗, "Performance analyses of photonic-crystal surface-emitting laser: toward high-speed optical communication" Nanoscale Res. Lett. 17, 90 (2022).
    [ DOI:10.1186/s11671-022-03728-x ]
  7. W. C. Tang, Y. T. Liu, C. H. Yeh, C. H. Lu, C. H. Tu, Y. L. Lin, Y. C. Lin, T. L. Hsu, L. Gao, S. W. Chang, P. Chen, and B. C. Chen∗, "Optogenetic manipulation of cell migration with high spatiotemporal resolution using lattice lightsheet microscopy," Commun. Biol., 5 879 (2022).
    [ DOI:10.1038/s42003-022-03835-6 ]
  8. H. T. Lin, Y. Y. Hsu, P. J. Cheng, W. T. Wang, S. W. Chang, and M. H. Shih*, "In situ tunable circular dichroism of flexible chiral metasurfaces composed of plasmonic nanorod trimers," Nanoscale Adv. 4, 2428 (2022).
    [ DOI:10.1039/d2na00144f ]
  9. C. T. Tung, S. W. Chang, and C. H. Wu*, "Analytical modeling of tunnel junction transistor lasers," IEEE J. Sel. Top. Quantum Electron, 28 1501008(2022).
    [ DOI:10.1109/JSTQE.2021.3090527 ]
  10. M. J. Yu, C. L. Chang, H. Y. Lan, Z. Y. Chiao, Y. C. Chen, H. W. H. Lee, Y. C. Chang, S. W. Chang, T. Tanaka, V. Tung, H. H. Chou*, and Y. J. Lu*, "Plasmon-enhanced solar-driven hydrogen evolution using titanium nitride metasurface broadband absorbers," ACS Photon 8, 3125 (2021).
    [ DOI:10.1021/acsphotonics.1c00927 ]
  11. P. C. Tsai, C. W. Huang, S. J. Chang, S. W. Chang*, and S. Y. Lin*, "Charge storage of isolated monolayer molybdenum disulfide in epitaxially grown MoS2/graphene hetero-structures for memory device applications," ACS Appl. Mater. & Inter., 13, 45864 (2021).
    [ DOI:10.1021/acsami.1c12064 ]
  12. C. T. Tai, P. Y. Chiu, C. Y. Liu, H. S. Kao, C. T. Harris, T. M. Lu, C. T. Hsieh, S. W. Chang, and J. Y. Li*,"Strain rffects on Rashba dpin-orbit coupling of two-dimensional hole gases in GeSn/Ge heterostructures," Adv. Mater., 33, 2007862 (2021).
    [ DOI:10.1002/adma.202007862 ]
  13. L. A. Chu*, S. W. Chang, W. C. Tang, Y. T. Tseng, P. Chen, B. C. Chen*, "5D superresolution imaging for a live cell nucleus," Current Opinion in Genetics & Development 67, 77 (2021).
    [ DOI:10.1016/j.gde.2020.11.005 ]
  14. C. H. Lin, D. W. Huang, T. T. Shih, H. C. Kuo, and S. W. Chang*, "Increasing responsivity-bandwidth margin of germanium waveguide photodetector with simple corner reflector," Opt. Express, 29, 10364 (2021).
    [ DOI:10.1364/OE.414691 ]
  15. Y. J. Fan*, H. Y. Hsieh, S. F. Tsai, C. H. Wu, C. M. Lee, Y. T. Liu, C. H. Lu, S. W. Chang*, and B. C. Chen*, "Microfluidic channel integrated with a lattice lightsheet microscopic system for continuous cell imaging," Lab. Chip., 21, 344 (2021).
    [ DOI:10.1039/D0LC01009J ]
  16. Y. J. Lu*, T. L. Shen, K. N. Peng, P. J. Cheng, S. W. Chang, M. Y. Lu, C. W. Chu, T. F. Guo, and H. A. Atwater*, "Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold," ACS Photon, 8, 335 (2021).
    [ DOI:10.1021/acsphotonics.0c01586 ]
  17. L. Yang, S. W. Chang, and C. H. Wu*, "A four-port model of light-emitting transistors for circuit simulation and application," IEEE Trans. Electron Dev. 67, 5572 (2020).
    [ DOI:10.1109/TED.2020.3028326 ]
  18. T. Y. Tsai, P. F. Chen, S. W. Chang, and Y. R. Wu*, "Studies of bulk and nanoribbon band structures in MoxW1-xS2 alloy system by full sp3d5 tight-binding model," Phys. Status Solidi B, 2000375 (2020).
    [ DOI:10.1002/pssb.202000375 ]
  19. Y. H. Hsieh, B. W. Hsu, K. N. Peng, K. W. Lee, C. W. Chu, S. W. Chang, H. W. Lin*, T. J. Yen*, and Y. J. Lu*, "Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold," ACS Nano 14, 11670 (2020).
    [ DOI:10.1021/acsnano.0c04224 ]
  20. C. L. Yu, Y. H. Hsiao, C. Y. Chang, P. J. Cheng, H. T. Lin, M. S. Lai, H. C. Kuo, S. W. Chang, and M. H. Shih*, "High circular polarized nanolaser with chiral gammadion metal cavity," Sci. Rep. 10, 7880 (2020).
    [ DOI:10.1038/s41598-020-64836-1 ]
  21. C. T. Tung, S. W. Chang*, and C. H. Wu*, "Chirp-free optical-signal generation using dual current-voltage modulation of transistor lasers," Opt. Lett. 45, 2474 (2020).
    [ DOI:10.1364/OL.383069 ]
  22. W. P. Guo, W. Y. Liang, C. W. Cheng, P. J. Cheng, W. L. Wu, Y. T. Wang, Q. Sun, S. Zu, S. W. Chang, H. Misawa, H. Ahn, M. T. Lin, S. Gwo*, "Chiral second-harmonic generation from monolayer WS2/aluminum plasmonic vortex metalens," Nano. Lett. 20, 2857 (2020).
    [ DOI:10.1021/acs.nanolett.0c00645 ]
  23. Y. W. Zhang, J. Y. Li, C. H.Wu, C. Y. Chang, S. W. Chang, M. H. Shih, and S. Y. Lin*, "Tungsten diselenide top-gate transistors with multilayer antimonene electrodes: gate stacks and epitaxially grown 2D material heterostructures," Sci. Rep., 10, 5967 (2020).
    [ DOI:10.1038/s41598-020-63098-1 ]
  24. S. T. Lin, K. S. Hsu, C. C. Chang, W. H. Lin, S. Y. Lin, S. W. Chang, Y. C. Chang, and M. H. Shih*, "Photonic crystal circular nanobeam cavity laser with type-II GaSb/GaAs quantum rings as gain material," Sci. Rep., 10, 4757 (2020).
    [ DOI:10.1038/s41598-020-61539-5 ]
  25. H. Y. Lan, I. C. Tseng, Y. H. Lin, S. W. Chang, and C. H. Wu*, "Characteristics of blue GaN/InGaN quantum-well light-emitting transistor," IEEE Electron Dev. Lett., 41, 91 (2020).
    [ DOI:10.1109/LED.2019.2955733 ]
  26. L. A. Chu, C. H. Lu, S. M. Yang, Y. T. Liu, Y. C. Tsai, S. W. Chang, P. Chen, T. K. Lee, Y. K. Hwu, A. S. Chiang*, B. C. Chen*, "Rapid single-wavelength light-sheet localization microscopy for clarified tissue," Nat. Commun. 10, 4762 (2019).
    [ DOI:10.1038/s41467-019-12715-3 ]
  27. Y. H. Chang, Y. L. Chou, S. W. Chang*, and C. H. Wu*, "Thermally-enhanced current gain of quantum-well heterojunction bipolar transistor," J. Appl. Phys. 126, 014503 (2019).
    [ DOI:10.1063/1.5091050 ]
  28. C. T. Hsieh and S. W. Chang*, "Effect of heavily p-doped base on radiative recombination of transistor laser," IEEE J. Sel. Top. Quantum Electron 25, 1501508 (2019).
    [ DOI:10.1109/JSTQE.2019.2918946 ]
  29. C. H. Lu, W. C. Tang, Y. T. Liu, F. C. M. Wu, C. Y. Chen, Y. C. Tsai, S. M. Yang, C. W. Kuo, Y. Okada, Y. K. Hwu, S. W. Chang, P. Chen*, and B. C. Chen*, "Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging," Commun. Biol. 2, 177 (2019).
    [ DOI:10.1038/s42003-019-0403-9 ]
  30. C. T. Tung, C. H. Chang, S. W. Chang*, and C. H. Wu*, "Pulse compression irrespective of fiber dispersion using chirp of transistor lasers," Opt. Lett., 44, 2109 (2019).
    [ DOI:10.1364/OL.44.002109 ]
  31. C. T. Tung, S. W. Chang, and C. H. Wu*, "Theoretical analysis on optical frequency response of tunnel-junction transistor lasers operated in different configurations," J. Appl. Phys., 125, 023105 (2019).
    [ DOI:10.1063/1.5067281 ]
  32. K. C. Chen, C. Y. Jian, Y. J. Chen, S. C. Lee, S. W. Chang*, and S. Y. Lin*, "Current enhancement and bipolar current modulation of top-gate transistors based on monolayer MoS2 on three-layer WxMo1-xS2," ACS Appl. Mater. & Inter., 10, 24733 (2018).
    [ DOI:10.1021/acsami.8b06327 ]
  33. H. T. Lin, C. Y. Chang, P. J. Cheng, M. Y. Li, C. C. Cheng, S. W. Chang, L. L. J. Li, C. W. Chu, P. K. Wei, and M. H. Shih*, "Circular dichroism control of tungsten diselenide (WSe2) atomic layers with plasmonic metamolecules," ACS Appl. Mater. & Inter., 10, 15996 (2018).
    [ DOI:10.1021/acsami.8b01472 ]
  34. H. C. Wang, C. H. Chu, P. C. Wu, H. H. Hsiao, H. J. Wu, J. W. Chen, W. H. Lee, Y. C. Lai, Y. W. Huang, M. L. Tseng, S. W. Chang, D. P. Tsai*, "Ultrathin planar cavity metasurface," SMALL, 1703920 (2018).
    [ DOI:10.1002/smll.201703920 ]
  35. C. T. Hsieh, S. Y. Lin, and S. W. Chang*, "Enhanced absorption due to formation of quasi-bound states in type-II coupled quantum rings," IEEE J. Sel. Top. Quantum Electron, 24, 1900307 (2018).
    [ DOI:10.1109/JSTQE.2017.2736438 ]
  36. H. A. Chen, W. H. Lin, C. Y. Chang, S. W. Chang, M. H. Shih, and S. Y. Lin*, "Type-I to type-II transformation of hybrid quantum nanostructures," IEEE J. Sel. Top. Quantum Electron, 23, 1900407 (2017).
    [ DOI:10.1109/JSTQE.2016.2629085 ]
  37. C. H. Chang, S. W. Chang*, and C. H. Wu*, "Theory for voltage modulation of transistor lasers using Franz-Keldysh absorption in the presence of optoelectronic feedback," Opt. Express, 24, 25515 (2016).
    [ DOI:10.1364/OE.24.025515 ]
  38. K. C. Chen, C. R. Wu, X. R. Chang, S. C. Lee, S. W. Chang, and S. Y. Lin*, "Enhancement of field-effect mobility in molybdenum-disulfide transistor through the treatment of low-power oxygen plasma," Jpn. J. Appl. Phys., 55 090302 (2016).
    [ DOI:10.7567/JJAP.55.090302 ]
  39. W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo*, and M. H. Shih*, "Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature," Sci. Rep., 6, 26578 (2016).
    [ DOI:10.1038/srep26578 ]
  40. C. T. Hsieh, T. H. Hsieh, and S. W. Chang*, “Improving accuracy using subpixel smoothing for multiband effective-mass Hamiltonians of semiconductor nanostructures,” Comput. Phys. Commun., 201, 63 (2016).
    [ DOI:10.1016/j.cpc.2015.12.018 ]
  41. P. J. Chiang and S. W. Chang*, "Efficient photonic-crystal mode solver: eigenvalue rather than generalized eigenvalue approach," IEEE J. Sel. Top. Quantum Electron., 22, 310 (2016).
    [ DOI:10.1109/JSTQE.2015.2497333 ]
  42. H. L. Wang, Y. H. Huang, G. S. Cheng, S. W. Chang, and C. H. Wu*, "Analysis of tunable internal loss caused by Franz-Keldysh absorption in transistor lasers," IEEE J. Sel. Top. Quantum Electron., 21, 270 (2015).
    [ DOI:10.1109/JSTQE.2015.2438814 ]
  43. S. W. Chang*, "Dressed linewidth enhancement factors in small semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 21, 157 (2015).
    [ DOI:10.1109/JSTQE.2014.2359542 ]
  44. C. R. Wu, X. R. Chang, S. W. Chang, C. E. Chang, C. H. Wu, S. Y. Lin*, "Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high on/off ratio," J. Phys. D: Appl. Phys., 48, 435101 (2015).
    [ DOI:10.1088/0022-3727/48/43/435101 ]
  45. K. S. Hsu, W. C. Hung, C. C. Chang, W. H. Lin, M. H. Shih*, P. T. Lee, S. Y. Lin, S. W. Chang, and Y. C. Chang, "Lasing action and extraordinary reduction in long radiative lifetime of type-II GaSb/GaAs quantum dots using circular photonic crystal nanocavity," Appl. Phys. Lett., 107, 091113 (2015).
    [ DOI:10.1063/1.4929948 ]
  46. M. Y. Lin, C. H. Wang, S. W. Chang, S. C. Lee, and S. Y. Lin*, "Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition," J. Phys. D: Appl. Phys., 48, 295106 (2015).
    [ DOI:10.1088/0022-3727/48/29/295106 ]
  47. P. J. Cheng, C. H. Tien, and S. W. Chang*, "Incomplete immunity to backscattering in chiral one-way photonic crystals," Opt. Express, 23, 10327 (2015).
    [ DOI:10.1364/OE.23.010327 ]
  48. P. J. Chiang and S. W. Chang*, "Design of metal-dielectric grating lasers only supporting surface-wave-like modes," Opt. Express, 22, 27845 (2014).
    [ DOI:10.1364/OE.22.027845 ]
  49. M. Y. Lin, Y. H. Chen, C. H. Wang, C. F. Su, S. W. Chang, S. C. Lee, and S. Y. Lin*, "Field effect of in-plane gates with different gap sizes on the Fermi level tuning of graphene channels," Appl. Phys. Lett., 104, 183503 (2014).
    [ DOI:10.1063/1.4875583 ]
  50. M. Y. Lin, Y. H. Chen, C. F. Su, S. W. Chang, S. C. Lee, and S. Y. Lin*, "Fermi-level shifts in graphene transistors with dual-cut channels scraped by atomic force microscope tips," Appl. Phys. Lett., 104, 023511 (2014).
    [ DOI:10.1063/1.4862275 ]
  51. S. W. Chang*, "Bidirectionality in bianistropic but reciprocal photonic crystals and its usage in active photonics," IEEE/OSA J. Lightwave. Technol., 32, 10 (2014).
    [ DOI:10.1109/JLT.2013.2288982 ]
  52. C. T. Hsieh and S. W. Chang*, "Bound-to-continuum absorption with tunneling in type-II nanostructures: a multiband source-radiation approach," Opt. Express, 21, 30778 (2013).
    [ DOI:10.1364/OE.21.030778 ]
  53. Y. A. Liao, Y. K. Chao, S. W. Chang, W. H. Chang, J. I. Chyi, and S. Y. Lin*, "Memory device application of wide-channel in-plane gate transistors with type-II GaAsSb-capped InAs quantum dots," Appl. Phys. Lett., 103, 143502 (2013).
    [ DOI:10.1063/1.4824067 ]
  54. P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin*, and C. H. Tien, "Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding," Opt. Express, 21, 13479 (2013).
    [ DOI:10.1364/OE.21.013479 ]
  55. P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin*, and C. H. Tien, "Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths," IEEE J. Sel. Top. Quantum. Electron., 19, 4800306 (2013).
    [ DOI:10.1109/JSTQE.2012.2231404 ]
  56. R. S. Moirangthem, P. J. Cheng, P. C. H. Chien, B. T. H. Ngo, S. W. Chang, C. H. Tien, and Y. C. Chang*, "Optical cavity modes of a single crystalline zinc oxide microsphere,” Opt. Express, 21, 3010 (2013).
    [ DOI:10.1364/OE.21.003010 ]
  57. P. J. Chiang and S. W. Chang*, "Frequency-domain formulation of photonic crystals using sources and gain," Opt. Express, 21, 1972 (2013).
    [ DOI:10.1364/OE.21.001972 ]
  58. S. W. Chang*, "Confinement factors and modal volumes of micro and nanocavities invariant to integration regions," IEEE J. Sel. Top. Quantum. Electron., 18, 1771 (2012).
    [ DOI:10.1109/JSTQE.2012.2193119 ]
  59. Y. Ye and S. W. Chang*, "Self-induced spin-polarized carrier source in active photonic device with artificial optical chirality," Appl. Phys. Lett., 101, 181106 (2012).
    [ DOI:10.1063/1.4765082 ]
  60. W. H. Lin, K. W. Wang, S. W. Chang, M. H. Shih, and S. Y. Lin*, "Type-II GaSb/GaAs coupled quantum rings: room-temperature luminescence enhancement and recombination lifetime elongation for device applications," Appl. Phys. Lett., 101, 031906 (2012).
    [ DOI:10.1063/1.4737443 ]
  61. T. H. Chung, W. H. Lin, Y. K. Chao, S. W. Chang, and S. Y. Lin*, "In-plane gate transistors with 40 μm wide channel width," IEEE Electron. Device Lett., 33, 1129 (2012).
    [ DOI:10.1109/LED.2012.2199735 ]
  62. S. W. Chang*, "Intra-cavity stimulated emission of photons in almost pure spin states without imposed nonreciprocity," Opt. Express, 20, 2516 (2012).
    [ DOI:10.1364/OE.20.002516 ]
  63. Y. G. Wang, S. W. Chang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih*, and H. C. Kuo, "Room temperature lasing with high group index in metal-coated GaN nanoring," Appl. Phys. Lett., 99, 251111 (2011).
    [ DOI:10.1063/1.3671648 ]
  64. S. W. Chang, C. Y. Lu, S. L. Chuang*, T. D. Germann, U. W. Pohl, and D. Bimberg, "Theory of metal-cavity surface-emitting microlasers and comparison with experiment,” IEEE. J. Sel. Top. Quantum. Electron., 17, 1681 (2011).
    [ DOI:10.1109/JSTQE.2011.2121894 ]
  65. S. W. Chang*, "Full frequency-domain approach to reciprocal microlasers and nanolasers-perspective from Lorentz reciprocity," Opt. Express, 19, 21116 (2011).
    Also see Erattum.
    [ DOI:10.1364/OE.19.021116 ]
  66. C. Y. A. Ni, S. W. Chang, S. L. Chuang*, and P. J. Schuck, "Quality factor of nanobowtie antenna," IEEE/OSA J. Lightwave. Technol., 29, 3107 (2011).
    [ DOI:10.1109/JLT.2011.2164780 ]
  67. Y. Ye, X. Li, F. Zhuang, and S. W. Chang*, "Homogenous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., 99, 031111 (2011).
    [ DOI:10.1063/1.3615054 ]
  68. C. Y. Lu, S. W. Chang, S. L. Chuang*, T. D. Germann, U. W. Pohl, and D. Bimberg, "Low thermal impedance of substrate-free metal cavity surface-emitting microlasers," IEEE Photonics Technol. Lett., 23, 1031 (2011).
    [ DOI:10.1109/LPT.2011.2132124 ]
  69. C. Y. A. Ni, S. W. Chang, D. J. Gargas, M. C. Moore, P. Yang, and S. L. Chuang*, "Metal coated zinc oxide nanocavities," IEEE J. Quantum. Electron., 47, 245 (2011).
    [ DOI:10.1109/JQE.2010.2073680 ]
  70. C. Y. Lu, S. W. Chang, S. L. Chuang*, T. D. Germann, U. W. Pohl, and D. Bimberg, "CW substrate-free metal-cavity surface microemitters at 300 K," Semicond. Sci. Technol., 26, 014012 (2011).
    [ DOI:10.1088/0268-1242/26/1/014012 ]
  71. G. E. Chang, S. W. Chang, and S. L. Chuang*, "Strain-balanced GezSn1-z-SixGey Sn1-x-y multiple-quantum-well lasers," IEEE J. Quantum Electron., 46, 1813 (2010).
    [ DOI:10.1109/JQE.2010.2059000 ]
  72. T. R. Lin, S. W. Chang, S. L. Chuang*, Z. Zhang, and P. J. Schuck, "Coating effect on optical resonance of plasmonic nanobowtie antenna," Appl. Phys. Lett., 97, 063106 (2010).
    [ DOI:10.1063/1.3478228 ]
  73. S. W. Chang, T. R. Lin, and S. L. Chuang*, "Theory of plasmonic Fabry-Perot nanolasers," Opt. Express, 18, 15039 (2010).
    [ DOI:10.1364/OE.18.015039 ]
  74. C. Y. Lu, S. W. Chang, S. L. Chuang*, T. D. Germann, and D. Bimberg, "Metal-cavity surface-emitting microlasers at room temperature," Appl. Phys. Lett., 96, 251101 (2010).
    [ DOI:10.1063/1.3455316 ]
  75. D. J. Gargas, M. C. Moore, C. Y. A. Ni, S. W. Chang, S. L. Chuang, and P. Yang*, "Whispering gallery mode lasing from zinc oxide hexagonal nanodisks," ACS. Nano., 4, 3270 (2010).
    [ DOI:10.1021/nn9018174 ]
  76. C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang*, "Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature," Appl. Phys. Lett., 95, 233507 (2009).
    [ DOI:10.1063/1.3272687 ]
  77. S. H. Moon, J. Park, J. M. Oh, N. J. Kim, D. Lee*, S. W. Chang, D. Nielsen, and S. L. Chuang, "Strong tunable slow and fast lights using a gain-clamped semiconductor optical amplifier," Opt. Express, 17, 21222 (2009).
    [ DOI:10.1364/OE.17.021222 ]
  78. S. W. Chang and S. L. Chuang*, "Fundamental formulation for plasmonic nanolasers," IEEE J. Quantum Electron, 45, 1014 (2009).
    [ DOI:10.1109/JQE.2009.2017210 ]
  79. G. E. Chang, S. W. Chang, and S. L. Chuang*, "Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum-well lasers at telecom wavelength," Opt. Express, 17, 11246 (2009).
    [ DOI:10.1364/OE.17.011246 ]
  80. S. W. Chang and S. L. Chuang*, "Normal modes in dispersive and inhomogeneous medium," Opt. Lett., 34, 91 (2009).
    [ DOI:10.1364/OL.34.000091 ]
  81. P. K. Kondratko, A. Matsudaira, S. W. Chang, and S. L. Chuang*, "Slow and fast light in quantum-well and quantum-dot semiconductor optical amplifiers," Chinese Opt. Lett., 6, 736 (2008).
    [ DOI:10.3788/COL20080610.0736 ]
  82. S. W. Chang, C. Y. A. Ni, and S. L. Chuang*, "Theory for bowtie plasmonic nanolasers," Opt. Express, 16, 10580 (2008). [selected in Virtual Journal of Nan. Sci. & Tech., 18(8), Surface and Interface Properties]
    [ DOI:10.1364/OE.16.010580 ]
  83. S. W. Chang, S. L. Chuang*, C. J. Chang-Hasnain, and H. Wang, "Slow light using spin coherence and V-type electromagnetically induced transparency in [110] strained quantum wells" J. Opt. Soc. Am. B: Opt. Phys., 24, 849 (2007).
    [ DOI:10.1364/JOSAB.24.000849 ]
  84. P. K. Kondratko, S. W. Chang, H. Su, and S. L. Chuang*, "Optical and electrical control of slow light in p-doped and intrinsic quantum-dot electroabsorbers," Appl. Phys. Lett., 90, 251108 (2007).
    [ DOI:10.1063/1.2749861 ]
  85. H. Gotoh*, S. W. Chang, S. L. Chuang, H. Okamot, and Y. Shibata, "Tunable slow light of 1.3 μm region in quantum dots at room temperature," J. J. Appl. Phys., 46, 2369 (2007).
    [ DOI:10.1143/JJAP.46.2369 ]
  86. S. W. Chang and S. L. Chuang*, "Theory of optical gain of Ge-SixGeySn1-x-y quantum-well lasers," IEEE. J. Quantum Electron., 43, 249 (2007).
    Also see Derivation on the Hamiltonian operator of [111] L valley.
    [ DOI:10.1109/JQE.2006.890401 ]
  87. S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang*, "Slow light based on coherent population oscillation in quantum dots at room temperature," IEEE J. Quantum Electron., 43, 196 (2007).
    [ DOI:10.1109/JQE.2006.889060 ]
  88. S. W. Chang and S. L. Chuang*, "Slow light based on population oscillation in quantum dots with inhomogeneous broadening," Phys. Rev. B, 72, 235330 (2005).
    [ DOI:10.1103/PhysRevB.72.235330 ]
  89. S. W. Chang and S. L. Chuang*, "Strain-induced enhancement of spin relaxation times in [110] and [111] grown quantum wells," Phys. Rev. B, 72, 115429 (2005). [selected in Virtual Journal of Nan. Sci. & Tech., 12(14), Nanomagnetism and Spintronics]
    [ DOI:10.1103/PhysRevB.72.115429 ]
  90. S. W. Chang, S. L. Chuang*, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, "Slow light using excitonic population oscillation," Phys. Rev. B, 70, 235333 (2004). [selected in Virtual Journal of Nan. Sci. & Tech., 11(1), Optical Properties and Quantum Optics]
    [ DOI:10.1103/PhysRevB.70.235333 ]
  91. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain*, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett., 29, 2291 (2004). [selected in Virtual Journal of Nan. Sci. & Tech., 11(7), Optical Properties and Quantum Optics]
    [ DOI:10.1364/OL.29.002291 ]
  92. S. W. Chang, S. L. Chuang*, and and N. Holonyak Jr., "Phonon- and Auger-assisted tunneling from a quantum well to a quantum dot," Phys. Rev. B, 70, 125312 (2004). [selected in Virtual Journal of Nan. Sci. & Tech., 10(14), Electronic Structure and Transport]
    [ DOI:10.1103/PhysRevB.70.125312 ]
  93. M. J. Chen, E. Z. Liang, S. W. Chang, and C. F. Lin*, "Model for band-edge electroluminescence from metal-oxide-semiconductor silicon tunneling diodes," J. Appl. Phys., 90, 789 (2001).
    [ DOI:10.1063/1.1381000 ]
  94. C. F. Lin*, M. J. Chen, S. W. Chang, P. F. Chung, E. Z. Liang, T. W. Su, and C. W. Liu "Electroluminescence at silicon band gap energy from mechanically pressed indium-tin-oxide/Si contact," Appl. Phys. Lett., 78, 1808 (2001).
    [ DOI:10.1063/1.1359138 ]